50 research outputs found

    Are 21st-century citizens grieving for their loss of privacy?

    Get PDF
    Although much research exists that examines cognitive events leading up to information disclosure, such as risk-benefit analysis and state-based and trait-based attributes, minimal research exists that examines user responses after a direct or indirect breach of privacy. The present study examines 1,004 consumer responses to two different high-profile privacy breaches using sentiment analysis. Our findings indicate that individuals who experience an actual or surrogate privacy breach exhibit similar emotional responses, and that the pattern of responses resembles well-known reactions to other losses. Specifically, we present evidence that users contemplating evidence of a privacy invasion experience and communicate very similar responses as individuals who have lost loved ones, gone through a divorce or who face impending death because of a terminal illness. These responses parallel behavior associated with the Kübler-Ross’s five stages of grief

    A Privacy Calculus Model for Personal Mobile Devices

    Get PDF
    Personal mobile devices (PMDs) initiated a multi-dimensional paradigmatic shift in personal computing and personal information collection fueled by the indispensability of the Internet and the increasing functionality of the devices. From 2005 to 2016, the perceived necessity of conducting transactions on the Internet moved from optional to indispensable. The context of these transactions changes from traditional desktop and laptop computers, to the inclusion of smartphones and tablets (PMDs). However, the traditional privacy calculus published by (Dinev and Hart 2006) was conceived before this technological and contextual change, and several core assumptions of that model must be re-examined and possibly adapted or changed to account for this shift. This paradigm shift impacts the decision process individuals use to disclose personal information using PMDs. By nature of their size, portability, and constant proximity to the user, PMDs collect, contain, and distribute unprecedented amounts of personal information. Even though the context within which people are sharing information has changed significantly, privacy calculus research applied to PMDs has not moved far from the seminal work by Dinev and Hart (2006). The traditional privacy calculus risk-benefit model is limited in the PMD context because users are unaware of how much personal information is being shared, how often it is shared, or to whom it is shared. Furthermore, the traditional model explains and predicts intent to disclose rather than actual disclosure. However, disclosure intentions are a poor predictor of actual information disclosure. Because of perceived indispensability of the information and the inability to assess potential risk, the deliberate comparison of risks to benefits prior to disclosure—a core assumption of the traditional privacy calculus—may not be the most effective basis of a model to predict and explain disclosure. The present research develops a Personal Mobile Device Privacy Calculus model designed to predict and explain disclosure behavior within the specific context of actual disclosure of personal information using PMDs

    Data Quality Procedures in Survey Research: An Analysis and Framework for Doctoral Program Curricula

    Get PDF
    To ensure validity in survey research, it is imperative that we properly educate doctoral students on best practices in data quality procedures. A 14-year analysis of 679 studies in the AIS “Basket of 8” journals noted undercommunication in the most pertinent procedures, consistent across journals and time. Given recent calls for improvements in data transparency, scholars must be educated on the importance and methods for ensuring data quality. Thus, to guide the education of doctoral students, we present a “5-C Framework\u27\u27 of data quality procedures derived from a wide-ranging literature review. Additionally, we describe a set of guidelines regarding enacting and communicating data quality procedures in survey research

    Sensemaking and Success in the Transition from Community Colleges to University IS/CS/CE Programs

    Get PDF
    Increasing the enrollment of women, minority, and other underrepresented populations in undergraduate information systems and computing programs is an important social issue. We explore ways of attracting and retaining community college transfer students—an important source of underrepresented students —by examining their sensemaking efforts as they transition to four-year universities. We conducted a qualitative study to test sensemaking theory and develop recommendations for retaining community college transfer students in undergraduate information systems, computer science, and computer engineering programs

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape

    Defining Natural History: Assessment of the Ability of College Students to Aid in Characterizing Clinical Progression of Niemann-Pick Disease, Type C

    Get PDF
    Niemann-Pick Disease, type C (NPC) is a fatal, neurodegenerative, lysosomal storage disorder. It is a rare disease with broad phenotypic spectrum and variable age of onset. These issues make it difficult to develop a universally accepted clinical outcome measure to assess urgently needed therapies. To this end, clinical investigators have defined emerging, disease severity scales. The average time from initial symptom to diagnosis is approximately 4 years. Further, some patients may not travel to specialized clinical centers even after diagnosis. We were therefore interested in investigating whether appropriately trained, community-based assessment of patient records could assist in defining disease progression using clinical severity scores. In this study we evolved a secure, step wise process to show that pre-existing medical records may be correctly assessed by non-clinical practitioners trained to quantify disease progression. Sixty-four undergraduate students at the University of Notre Dame were expertly trained in clinical disease assessment and recognition of major and minor symptoms of NPC. Seven clinical records, randomly selected from a total of thirty seven used to establish a leading clinical severity scale, were correctly assessed to show expected characteristics of linear disease progression. Student assessment of two new records donated by NPC families to our study also revealed linear progression of disease, but both showed accelerated disease progression, relative to the current severity scale, especially at the later stages. Together, these data suggest that college students may be trained in assessment of patient records, and thus provide insight into the natural history of a disease

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    The epigenetic landscape of renal cancer

    Get PDF
    This is an accepted manuscript of an article published by Nature in Nature Reviews: Nephrology on 28/11/2016, available online: https://doi.org/10.1038/nrneph.2016.168 The accepted version of the publication may differ from the final published version.The majority of kidney cancers are associated with mutations in the von Hippel-Lindau gene and a small proportion are associated with infrequent mutations in other well characterized tumour-suppressor genes. In the past 15 years, efforts to uncover other key genes involved in renal cancer have identified many genes that are dysregulated or silenced via epigenetic mechanisms, mainly through methylation of promoter CpG islands or dysregulation of specific microRNAs. In addition, the advent of next-generation sequencing has led to the identification of several novel genes that are mutated in renal cancer, such as PBRM1, BAP1 and SETD2, which are all involved in histone modification and nucleosome and chromatin remodelling. In this Review, we discuss how altered DNA methylation, microRNA dysregulation and mutations in histone-modifying enzymes disrupt cellular pathways in renal cancers

    A privacy calculus model for personal mobile devices

    Get PDF
    Personal mobile devices (PMDs) initiated a multi-dimensional paradigmatic shift in personal computing and personal information collection fueled by the indispensability of the Internet and the increasing functionality of the devices. From 2005 to 2016, the perceived necessity of conducting transactions on the Internet moved from optional to indispensable. The context of these transactions changes from traditional desktop and laptop computers, to the inclusion of smartphones and tablets (PMDs). However, the traditional privacy calculus published by (Dinev and Hart 2006) was conceived before this technological and contextual change, and several core assumptions of that model must be re-examined and possibly adapted or changed to account for this shift. This paradigm shift impacts the decision process individuals use to disclose personal information using PMDs. By nature of their size, portability, and constant proximity to the user, PMDs collect, contain, and distribute unprecedented amounts of personal information. Even though the context within which people are sharing information has changed significantly, privacy calculus research applied to PMDs has not moved far from the seminal work by Dinev and Hart (2006). The traditional privacy calculus risk-benefit model is limited in the PMD context because users are unaware of how much personal information is being shared, how often it is shared, or to whom it is shared. Furthermore, the traditional model explains and predicts intent to disclose rather than actual disclosure. However, disclosure intentions are a poor predictor of actual information disclosure. Because of perceived indispensability of the information and the inability to assess potential risk, the deliberate comparison of risks to benefits prior to disclosure—a core assumption of the traditional privacy calculus—may not be the most effective basis of a model to predict and explain disclosure. The present research develops a Personal Mobile Device Privacy Calculus model designed to predict and explain disclosure behavior within the specific context of actual disclosure of personal information using PMDs
    corecore